Functional Gage Design
2-Day Seminar
(~16 hours of instruction; 1.6 CEU’s)

Course Description
Eliminate arbitrary inspection practices. Inspection processes are often developed after the fact, and the parts are then judged by criteria loosely related to the part’s specific function. Thus, parts are passed that shouldn’t be, and others are rejected that would work. Discussions at the workshop will cover all inspection techniques currently available and show you when to use them.

Objectives
1. Learn about gage design principles/tolerances and allowances
2. Develop ways to avoid commonly used but improper gaging and inspection techniques
3. Study the proper use of Inspection machines (CMM) when designing gages
4. Gain knowledge of Substitute systems
5. Discover Surface plate inspection and much more

Benefits
By learning the proper application of functional gaging and inspection techniques you will increase your production of quality parts. When you understand how to design and build your functional gaging and inspection processes along with the part design, you will be developing inspection criteria directly related to the part's specific application. This means that when your parts are inspected, you can be sure that they will work.

Program Outline
Gage Design Principles
- Next assembly analysis
- Datum reference frames
Surface Plate Gaging Principles
- How to replicate fixtures
- How to replicate functional gaging
- Inspection & gaging policy
- Combining attributes & variables gaging
Tooling Hole Fixturing and Inspection
- Maximum material condition fixtures
- Regardless of feature size fixtures
SPC Gaging Principles
Functional Gaging with Coordinate Measuring Machines
- Software setups
- Fixture setups
- Process capability studies
Gaging according to ASME Y14.5
How to inspect/gage each of the 14 geometric characteristics
Layout Gaging
- Datum Rotation
- Datum Translation
Low-Cost Gaging Principles
Optical Gaging Thread Gaging
- Principles of chart design
- Attributes and variables
- Variables data from optical charts gaging & inspection
The Six-Step Gage Design Review Methodology
A team analysis based on transparencies of parts provided by the instructor and attendees. You may bring your prints to be used in the class.

Who Should Attend
Managers of engineering, quality control and inspection departments, design engineers, product engineers, and mechanical engineers: If you are responsible for any aspect of the manufacturing process from design to inspection, you will benefit by attending.

Prerequisites
A fundamental knowledge of GD&T and its applications is necessary. An Advanced GD&T course or equivalent experience is recommended.